import numpy as np
import scipy.sparse
import scipy.linalg
from .quantum_walk import QuantumWalk
from . import _pyneblina_interface as nbl
[docs]
class ContinuousTime(QuantumWalk):
r"""
Manage instances of continuous-time quantum walks on graphs.
For further implementation details and theoretical background,
refer to the Notes Section.
Parameters
----------
graph :
Graph on which the quantum walk takes place.
There are two acceptable inputs:
* Simple graph (:class:`hiperwalk.Graph`);
* Weighted graph (:class:`hiperwalk.WeightedGraph`);
**kwargs : optional
Additional arguments to set the Hamiltonian and evolution operator.
See Also
--------
set_hamiltonian
set_evolution
Notes
-----
The continuous-time quantum walk model represents quantum particles
evolving on a graph in continuous time, as directed by the Schrödinger
equation. The Hamiltonian is usually chosen as the adjacency matrix
or the Laplacian of the graph. A positive parameter gamma acts
as a weighting factor for the Hamiltonian, adjusting the walk's
spreading rate. When marked vertices are present,
the Hamiltonian is suitably modified.
The computational basis associated with a graph
:math:`G(V, E)` comprising :math:`n` vertices
:math:`v_0, \ldots, v_{n-1}` is spanned by the states
:math:`\ket{i}` for
:math:`0 \leq i < n`, where
:math:`\ket{i}` describes the walker's position
as vertex :math:`v_i`.
The adjacency matrix of :math:`G(V, E)` is the
:math:`n`-dimensional matrix :math:`A` such that
.. math::
A_{i,j} = \begin{cases}
1, \text{ if } v_i \text{ is adjacent to } v_j,\\
0, \text{ otherwise.}
\end{cases}
Similarly, the Laplacian matrix is defined as
.. math::
L_{i,j} = \begin{cases}
\text{degree}(v_i), \text{ if } i=j,\\
-1, \text{ if } i\neq j \text{ and }
v_i \text{ is adjacent to } v_j,\\
0, \text{ otherwise.}
\end{cases}
The Hamiltonian's formulation is detailed in
:meth:`hiperwalk.ContinuousTime.set_hamiltonian`,
depending on the choice between the adjacency
or Laplacian matrix, along with the positioning
of the marked vertices.
The :class:`hiperwalk.ContinuousTime` class enables the simulation of
real Hamiltonians.
A particular Hamiltonian :math:`H`,
can be simulated by creating a :class:`hiperwalk.WeightedGraph`
with adjacency matrix :math:`C` such that :math:`H = -\gamma C`.
Additionally, the Laplacian matrix is computed
as :math:`D - A`, with :math:`D` being
the degree matrix.
See :meth:`hiperwalk.Graph.adjacency_matrix`
and :meth:`hiperwalk.Graph.laplacian_matrix`.
For a comprehensive understanding of continuous-time quantum
walks, consult reference [1]_.
To examine the differences between utilizing
the adjacency matrix and the Laplacian matrix,
refer to reference [2]_.
References
----------
.. [1] E. Farhi and S. Gutmann. "Quantum computation and decision trees".
Physical Review A, 58(2):915–928, 1998. ArXiv:quant-ph/9706062.
.. [2] T. G. Wong, L. Tarrataca, and N. Nahimov. Laplacian versus adjacency
matrix in quantum walk search. Quantum Inf Process 15, 4029-4048, 2016.
"""
_valid_kwargs = dict()
[docs]
def __init__(self, graph=None, **kwargs):
super().__init__(graph=graph)
# create attributes
self.hilb_dim = self._graph.number_of_vertices()
self._gamma = None
self._hamil_type = None
self._terms = None
self._hamiltonian = None
self._time = None
# import inspect
if not bool(ContinuousTime._valid_kwargs):
# assign static attribute
ContinuousTime._valid_kwargs = {
'gamma': ContinuousTime._get_valid_kwargs(
self._set_gamma),
'marked': ContinuousTime._get_valid_kwargs(
self._set_marked),
'evolution': ContinuousTime._get_valid_kwargs(
self._set_evolution),
'time': ContinuousTime._get_valid_kwargs(
self._set_time),
}
self.set_evolution(**kwargs)
def _set_gamma(self, gamma=0.1):
if gamma is None or gamma.imag != 0:
raise TypeError("Value of 'gamma' is not float.")
if self._gamma != gamma:
self._gamma = gamma
return True
return False
[docs]
def set_gamma(self, gamma=0.1):
r"""
Set gamma.
Parameter gamma is used in the definition of the
Hamiltonian to determine the hopping probability per unit
of time. Upon setting gamma, both the Hamiltonian and evolution
operators are updated.
Parameters
----------
gamma : float, default=0.1
The value of gamma.
Raises
------
TypeError
If ``gamma`` is ``None`` or complex.
ValueError
If ``gamma < 0``.
"""
self.set_hamiltonian(gamma=gamma,
type=self._hamil_type,
marked=self._marked)
[docs]
def get_gamma(self):
r"""
Retrieve the value of gamma used in
the definition of the Hamiltonian.
Returns
-------
float
See Also
--------
set_gamma
"""
return self._gamma
[docs]
def set_marked(self, marked=[]):
self.set_hamiltonian(gamma=self._gamma,
type=self._hamil_type,
marked=marked)
def _set_hamiltonian(self, gamma=0.1, type='adjacency', marked=[]):
update = self._set_gamma(gamma)
update = self._set_hamiltonian_type(type) or update
update = self._set_marked(marked) or update
if update:
if self._hamil_type == 'adjacency':
H = -self._gamma * self._graph.adjacency_matrix()
else:
H = -self._gamma * self._graph.laplacian_matrix()
# creating oracle
if len(self._marked) > 0:
data = np.ones(len(self._marked), dtype=np.int8)
oracle = scipy.sparse.csr_array(
(data, (self._marked, self._marked)),
shape=(self.hilb_dim, self.hilb_dim))
H -= oracle
self._hamiltonian = H
return update
[docs]
def set_hamiltonian(self, gamma=0.1, type="adjacency", marked=[]):
r"""
Set the Hamiltonian.
The Hamiltonian takes the form of ``-gamma*C`` wheres
``C`` is either the adjacency matrix or the Laplacian matrix.
If marked vertices are specified, the Hamiltonian
is modified as described in the Notes section.
Once the Hamiltonian has been established,
the evolution operator is updated accordingly.
Parameters
----------
gamma : float, default=0.1
The value of gamma.
type: {'adjacency', 'laplacian'}
Two types of Hamiltonian are used:
``'A'`` is shorthand for ``'adjacency'`` (default).
``'L'`` is shorthand for ``'laplacian'``.
marked : list of vertices, default=[]
List of vertices to be marked.
If empty list, no vertex is marked.
Raises
------
TypeError
If ``gamma`` is ``None`` or complex.
ValueError
If ``gamma < 0``.
See Also
--------
set_gamma
set_hamiltonian_type
set_marked
set_evolution
Notes
-----
The Hamiltonian is given by [1]_ [2]_
.. math::
H = -\gamma C - \sum_{m \in M} \ket m \bra m,
where :math:`C` is either the adjacency matrix or
the Laplacian matrix.
The set :math:`M` specifies the marked vertices via
the argument ``marked=M``. For instance, ``marked={0}``
specifies that :math:`v_0` is the marked vertex.
The default is :math:`M=\emptyset`.
References
----------
.. [1] E. Farhi and S. Gutmann.
"Quantum computation and decision trees".
Physical Review A, 58(2):915–928, 1998.
ArXiv:quant-ph/9706062.
.. [2] A. M. Childs and J. Goldstone.
"Spatial search by quantum walk",
Phys. Rev. A 70, 022314, 2004.
"""
self.set_evolution(time=self._time,
terms=self._terms,
gamma=gamma,
type=type,
marked=marked)
[docs]
def get_hamiltonian(self):
r"""
Retrieve the Hamiltonian.
Returns
-------
:class:`scipy.sparse.csr_array`
See Also
--------
set_hamiltonian
"""
return self._hamiltonian
def _set_hamiltonian_type(self, type='adjacency'):
if type.upper() == 'A':
type = 'adjacency'
elif type.upper() == 'L':
type = 'laplacian'
if type != self._hamil_type:
self._hamil_type = type
return True
return False
[docs]
def set_hamiltonian_type(self, type='adjacency'):
r"""
Set the type of the Hamiltonian.
Parameters
----------
type: {'adjacency', 'laplacian'}
Two types of Hamiltonian are used:
``'A'`` is shorthand for ``'adjacency'``.
``'L'`` is shorthand for ``'laplacian'``.
"""
self.set_hamiltonian(gamma=self._gamma,
type=type,
marked=self._marked)
[docs]
def get_hamiltonian_type():
r"""
Retrieve the type of the Hamiltonian.
See Also
--------
set_hamiltonian_type
Returns
-------
type: {'adjacency', 'laplacian'}
"""
return self._hamil_type
def _set_time(self, time=1):
if time is None or time < 0:
raise ValueError(
"Expected non-negative `time` value."
)
if time != self._time:
self._time = time
return True
return False
[docs]
def set_time(self, time=1):
r"""
Set a time instant.
Defines a time t and calculates the evolution operator U(t) at
the specified time (see Notes).
Parameters
----------
time : float, default=1
Raises
------
ValueError
If ``time < 0``.
See Also
--------
set_evolution
Notes
-----
The evolution operator is given by
.. math::
U(t) = \text{e}^{-\text{i}tH},
where :math:`H` is the Hamiltonian, and
:math:`t` is the time.
"""
self.set_evolution(time=time,
terms=self._terms,
gamma=self._gamma,
type=self._hamil_type,
marked=self._marked)
def _set_terms(self, terms=21):
if self._terms != terms:
self._terms = terms
return True
return False
[docs]
def set_terms(self, terms=21):
r"""
Set the number of terms used to calculate the
evolution operator as a power series.
Parameters
----------
terms : int, default=20
Number of terms in the truncated Taylor series expansion.
See Also
--------
set_evolution
"""
self.set_evolution(time=self._time,
terms=terms,
gamma=self._gamma,
type=self._hamil_type,
marked=self._marked)
[docs]
def get_terms(self):
r"""
Retrieve the number of terms in the power series used to
calculate the evolution operator.
Returns
-------
int
See Also
--------
set_terms
set_evolution
"""
return self._terms
def _set_evolution(self, terms=21):
r"""
If this method is invoked,
the evolution is recalculated
"""
time = self._time
if time == 0:
self._evolution = np.eye(self.hilb_dim)
return
n = terms - 1
H = self.get_hamiltonian()
hpc = nbl.get_hpc()
#TODO: when scipy issue 18086 is solved,
# invoke scipy.linalg.expm to calculate power series
def numpy_matrix_power_series(A, n):
"""
I + A + A^2/2 + A^3/3! + ... + A^n/n!
"""
U = np.eye(A.shape[0], dtype=A.dtype)
curr_term = U.copy()
for i in range(1, n + 1):
curr_term = curr_term @ A / i
U += curr_term
return U
# determining the number of terms in power series
max_val = np.max(np.abs(H))
if max_val*time <= 1:
if hpc is not None:
nbl_U = nbl.matrix_power_series(-1j*time*H, n)
else:
U = numpy_matrix_power_series(-1j*time*H.todense(), n)
else:
# if the order of magnitude is very large,
# float point errors may occur
if ((isinstance(time, int) or time.is_integer())
and max_val <= 1
):
new_time = 1
num_mult = time - 1
else:
# TODO: assert precision
new_time = max_val*time
order = np.ceil(np.math.log(new_time, n))
new_time /= 10**order
num_mult = int(np.round(time/new_time)) - 1
if hpc is not None:
new_nbl_U = nbl.matrix_power_series(
-1j*new_time*H, n)
nbl_U = nbl.multiply_matrices(new_nbl_U, new_nbl_U)
for i in range(num_mult - 1):
nbl_U = nbl.multiply_matrices(nbl_U, new_nbl_U)
else:
U = numpy_matrix_power_series(
-1j*new_time*H.todense(), n)
U = np.linalg.matrix_power(U, num_mult + 1)
if hpc is not None:
U = nbl.retrieve_matrix(nbl_U)
self._evolution = U
[docs]
def set_evolution(self, **kwargs):
r"""
Set the evolution operator.
This method defines the evolution operator for a specified
``time``.
It first determines the
Hamiltonian and subsequently derives the evolution operator
via a truncated Taylor series. The default number of terms
in this series is set to ``terms=21``, which is adequate
when the Hamiltonian is derived from the adjacency matrix
and gamma is less than 1.
Parameters
----------
**kwargs :
Additional arguments for setting Hamiltonian and time.
If omitted, the default arguments are used.
See :meth:`hiperwalk.ContinuousTime.set_hamiltonian`,
:meth:`hiperwalk.ContinuousTime.set_time`, and
:meth:`hiperwalk.ContinuousTime.set_terms`.
See Also
--------
set_hamiltonian
set_time
set_terms
Notes
-----
The evolution operator is given by
.. math::
U(t) = \text{e}^{-\text{i}tH},
where :math:`H` is the Hamiltonian, and
:math:`t` is the time.
The :math:`n\text{th}` partial sum of
the Taylor series expansion is given by
.. math::
\text{e}^{-\text{i}tH} \approx
\sum_{j = 0}^{n-1} (-\text{i}tH)^j / j!
where ``terms``:math:`=n`.
This choice reflects default Python loops over integers,
such as ``range`` and ``np.arange``.
.. warning::
For non-integer time (floating number),
the result is approximate. It is recommended
to select a small time interval and perform
multiple matrix multiplications to minimize
rounding errors.
.. todo::
Use ``scipy.linalg.expm`` when ``hpc=None`` once the
`scipy issue 18086
<https://github.com/scipy/scipy/issues/18086>`_
is solved.
"""
def filter_and_call(method, update):
valid = self._get_valid_kwargs(method)
filtered = self._filter_valid_kwargs(kwargs, valid)
return method(**filtered) or update
update = filter_and_call(self._set_time, False)
update = filter_and_call(self._set_hamiltonian, update)
update = filter_and_call(self._set_terms, update)
if (update):
filter_and_call(self._set_evolution, update)